新西兰服务器

ParallelStream使用的坑怎么解决


ParallelStream使用的坑怎么解决

发布时间:2022-01-12 21:30:03 来源:高防服务器网 阅读:57 作者:iii 栏目:安全技术

今天小编给大家分享一下ParallelStream使用的坑怎么解决的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

比如下面的代码片段,让人阅读的时候就像是读诗一样。但是一旦用不好,也是会要命的。

List<Integer> transactionsIds = widgets.stream()              .filter(b -> b.getColor() == RED)              .sorted((x,y) -> x.getWeight() - y.getWeight())              .mapToInt(Widget::getWeight)              .sum();

这段代码有一个关键的函数,那就是stream。通过它,可以将一个普通的list,转化为流,然后就可以使用类似于管道的方式对list进行操作。总之,用过的都说好。

对这些函数还不是太熟悉?可以参考:《到处是map、flatMap,啥意思?》

问题来了

假如我们把stream换成parallelStream,会发生什么情况?

根据字面上的意思,流会从串行 变成并行。

既然是并行,那用屁股想一想,就知道这里面肯定会有线程安全问题。不过我们这里讨论的并不是要你使用线程安全的集合,这个话题太低级。现阶段,知道在线程不安全的环境中使用线程安全的集合,已经是一个基本的技能。

这次踩坑的地方,是并行流的性能问题。

我们用代码来说话。

下面的代码,开启了8个线程,这8个线程都在使用并行流进行数据计算。在执行的逻辑中,我们让每个任务都sleep  1秒钟,这样就能够模拟一些I/O请求的耗时等待。

使用stream,程序会在30秒后返回,但我们期望程序能够在1秒多返回,因为它是并行流,得对得起这个称号。

测试发现,我们等了好久,任务才执行完毕。

static void paralleTest() {     List<Integer> numbers = Arrays.asList(             0, 1, 2, 3, 4, 5, 6, 7, 8, 9,             10, 11, 12, 13, 14, 15, 16, 17, 18, 19,             20, 21, 22, 23, 24, 25, 26, 27, 28, 29     );     final long begin = System.currentTimeMillis();     numbers.parallelStream().map(k -> {         try {             Thread.sleep(1000);             System.out.println((System.currentTimeMillis() - begin) + "ms => " + k + " t" + Thread.currentThread());         } catch (InterruptedException e) {             e.printStackTrace();         }         return k;     }).collect(Collectors.toList()); }  public static void main(String[] args) { //    System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "20");     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start();     new Thread(() -> paralleTest()).start(); }

实际上,在不同的机器上执行,这段代码花费的时间都不一样。

既然是并行,那肯定得有个并行度。太低了,体现不到并行的能能力;太大了,又浪费了上下文切换的时间。我是很沮丧的发现,很多高级研发,将线程池的各种参数背的滚瓜烂熟,各种调优,竟然敢睁一只眼闭一只眼的在I/O密集型业务中用上parallelStream。

要了解这个并行度,我们需要查看具体的构造方法。在ForkJoinPool类中找到这样的代码。

try {  // ignore exceptions in accessing/parsing properties     String pp = System.getProperty         ("java.util.concurrent.ForkJoinPool.common.parallelism");     if (pp != null)         parallelism = Integer.parseInt(pp);     fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(         "java.util.concurrent.ForkJoinPool.common.threadFactory");     handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(         "java.util.concurrent.ForkJoinPool.common.exceptionHandler"); } catch (Exception ignore) { }  if (fac == null) {     if (System.getSecurityManager() == null)         fac = defaultForkJoinWorkerThreadFactory;     else // use security-managed default         fac = new InnocuousForkJoinWorkerThreadFactory(); } if (parallelism < 0 && // default 1 less than #cores     (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)     parallelism = 1; if (parallelism > MAX_CAP)     parallelism = MAX_CAP;

可以看到,并行度到底是多少,是由下面的参数来控制的。如果无法获取这个参数,则默认使用 CPU个数-1 的并行度。

可以看到,这个函数是为了计算密集型业务去设计的。如果你喂给它一大堆任务,它就会由并行执行退变成类似于串行的效果。

-Djava.util.concurrent.ForkJoinPool.common.parallelism=N

即使你使用-Djava.util.concurrent.ForkJoinPool.common.parallelism=N设置了一个初始值大小,它依然有问题。

因为,parallelism这个变量是final的,一旦设定,不允许修改。也就是说,上面的参数只会生效一次。

张三可能使用下面的代码,设置了并行度大小为20。

System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "20");

李四可能用同样的方式,设置了这个值为30。那实际在项目中用的是哪个值,那就得问JVM是怎么加载的类信息了。

这种方式并不太非常靠谱。

一种解决方式

我们可以通过提供外置的forkjoinpool,也就是改变提交方式,来实现不同类型的任务分离。

代码如下所示,通过显式的代码提交,即可实现任务分离。

ForkJoinPool pool = new ForkJoinPool(30);  final long begin = System.currentTimeMillis(); try {     pool.submit(() ->             numbers.parallelStream().map(k -> {                 try {                     Thread.sleep(1000);                     System.out.println((System.currentTimeMillis() - begin) + "ms => " + k + " t" + Thread.currentThread());                 } catch (InterruptedException e) {                     e.printStackTrace();                 }                 return k;             }).collect(Collectors.toList())).get(); } catch (InterruptedException e) {     e.printStackTrace(); } catch (ExecutionException e) {     e.printStackTrace(); }

这样,不同的场景,就可以拥有不同的并行度。这种方式和CountDownLatch有异曲同工之妙,我们需要手动管理资源。

以上就是“ParallelStream使用的坑怎么解决”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注高防服务器网行业资讯频道。

[微信提示:高防服务器能助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。

[图文来源于网络,不代表本站立场,如有侵权,请联系高防服务器网删除]
[